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MULTIVALUED DISPLACEMENTS AND VOLTERRA DISLOCATIONS IN PLANE 

NONLINEAR ELASTICITY THEORY 

L. M. Zubov and M. I. Karyakin UDC 539.3 

The problem is solved of determining the plane displacement field of a continuous medium 
by means of a unique finite strain tensor field given in a non-simply connected plane domain 
and satisfying the nonlinear compatibility equation. Given for the plane problem is a gen- 
eralization of the classical Weingarten theorem to the case of large strains. An expression 
is obtained for the Burgers and Frank vectors of the Volterra dislocation (isolated defect) 
in terms of the finite strain tensor field. Given is a formulation of the plane problem of 
determining the stresses in a nonlinearly elastic body containing an isolated defect with 
given characteristics. An exact solution of the problems of a wedge disclination is found 
for a specific model of a nonlinearly elastic material. It is established that the stress 
field has no singularities on the disclination axis for a nonlinear formulation of the prob- 
lem. 

I. The plane strain of a continuous medium is described by the relationships 

X 1 = Xl(Xl ,  x2), X 2 ---~ X2(Xl, z2), X3 ---~ 23 , ( 1 , 1 )  

where x k and X k are Cartesian coordinates of points of the medium, respectively, before and 
after strain. We denote the coordinate directions by e k (k = i, 2, 3). We introduce complex 
coordinates and their associated vector bases [1-5] 

= x~ + ~x2, -~ = x l  - -  ix2, z = X1  + iX~,  "z = X1  - -  iX2 ,  

fl =|~-- I -~- (e  1 - i e , ) ,  f l _ ~ , = e l n u  ~e2, f a = [ a f e s ,  f~t . [nf6~-  

Here 6~ is the Kronecker delta. The plane strain (I.I) can evidently be given by using the 
complex-valued function 

z = z(~,  -~), x ,  = x, .  ( 1 . 2 )  

The site gradient (distortion tensor) [2, 6] corresponding to the transformation (1.2) 
has the form 

axh a~ m ~ , f  a~ f,f  ~ f2f c = ~ e=ea = ~..i + o: "-3 + ~ ~ + at ' + fats" (I. 3) 

A polar expansion of the site gradient results [7, pp. 59, 60] in the measure of the distor- 
tionU which is a symmetric positive-definite tensor of the second rank, and to an intrinsi- 
cally orthogonal rotation tensor A 

C = U . A ,  U = Gil 2, G --~ C.C T. ( 1 . 4 )  

The Cauchy-Green finite strain tensor E is expressed in terms of the Cauchy strain 
measure G by the relationship [2, p. 24] 

E = (1/2)(6 - -  I) ( 1 . 5 )  

(I is the unit tensor). For plane strain the rotation tensor has the representation 

A = (I - -  eae~) cos X + (e,ez - -  e , e 0  s in X + eaea = etX|*fl -t- e-iX~2|2 -4- |'[a, ( 1 . 6 )  
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where • is the angle of rotation of the principal strain axes. We find the Cauchy strain 
measure from (1.3) 

o = Glv~ + G~V~ + G i ~  + C ~  + ~,&~ ( i .  7 ) 

The complex components G~ of 

nents G=~ = e=.G.e~ by means of the 

the tensor G are expressed in terms of its Cartesian compo- 

formulas G~ ---- + (G n + G~), G~ i = -~- (Gn -- G2~ -- 2iGi2 ). 

Let us formulate the problem of determining the plane displacement field by means of a 
given tensor E(xi, x=). According to (1.5), this problem is equivalent to the problem of find- 
ing the function z(E, ~) from the nonlinear system of equations (1.7) for given continuously 
differentiable functions G~(~, ~). In the case of plane strain the compatibility equations 
in GaB re~ce to one relationship that denotes the disappearance of the component Ri=i= of 
the Riemann-Christoffel curvature tensor constructed in the Gas metric: 

( ~ G ~ - -  GL) o~--T - -  ~ + a "  " az~ax~ + 0=~ az i az~ 

l OQ 11 0G22 i 
2 Ox~ ax~ 2 

--~ k a~ ] ]--6~.2 a~" 

i OGii OQ~ 

( 0G2~ ~2 / ( OQII 0G12 i OQn ~ 
ax i ] ] Jr G~ am i ax~ 2 ax i az I 

~ OQ~ OQ~ OG n OQ~ 
Ox 2 ax i oz i " Ox~ 0z~ -t- 

OQil aG~ ) 
2 ax~ az i , = O. 

In complex variables this relationship is written in the form 

(G~G ~ G~G 2~ (2 ~ ~ O~G~)+ G~ (aa~ ar 

z k a~ l /  a~ a~ -- a--T- a - T -  a~ a~ "+ 

q- 2 a~ 0~ Z a~ a~ ] : 0 .  

( i . 8 )  

(l.g) 

On the basis of (1.4) 

c = U~e~Wf~ + u,%-~f~ + ub'n~h + ub-~x~f~ + Pb 

Comparing the expressions (1.3) and (i.i0), we obtain 

az =U~e~Z, az a-T "=-  = U l e ' "  a~ 

Using the formulas presented in [8, p. 64], we write explicit expressions for the components 
of the distortion measure in terms of components of the tensor G: 

I V V ~  2~ GiG2 GiG2 + 2G~, ui  = u~ = T 2 - 

i 
u; = ( ~ i )  = 7 ( v l )  -1G~. 

I f  the  f i e l d  of r o t a t i o n s  X(~, ~) were known then according to (1.11) the  func t ion  z(~, ~) 

would be determined by the quadrature z : Ie'X(U~d~ q" U~d~)o 

The condi t ion  for  i n t e g r a b i l i t y  of the system (1.11) for  z(~, 

4(uIe~9 = ~(vio% a~ 

(1.10) 

(i.li) 

(1.12) 

~) evidently has the form 

(1.13) 
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The relationship (1.13) and its complex conjugate comprise equations to determine the field 
of rotations. Indeed, the mentioned relationships are transformed as follows 

ax ax 
o~='q(~,~), ~ ='q(~;, ~), 

_ _ _  , , _  _ _ o . 1 1 ) 1 , :  

A U2U 1 U lrr~ = i 2 -- l t J 2 "  

Using _the representation (1.12) it can be confirmed that the integrability condition 8q/ 
8~ = ~q/0~ for the system (1.14) agrees with the strain compatibility equation (1.9) which 
components of the tensor G satisfy by assumptions. 

If the value X0 = X(~0, ~0) of the angle of rotation is given at a certain point M 0 
with the complex coordinates ~0, ~0, then the field of rotations in the case of a simply 
connected domain is determined uniquely from the system (1.14). After having determined 
X(~, ~) the function z(~, ~) is found uniquely by integrating the system (i.ii) for the given 
value z 0 ffi z(~0, ~0). 

2. We assume that the material body in the reference configuration (undeformed state) 
occupies a doubly connected domain. This domain can be transformed into a simply connected 
domain by drawing a slit (partition) along a certain curve o. Let us examine the path of 
integration consisting of a curve connecting the points M0 and M and not intersecting the 
partition o, and a closed contour not shrinkable to a point that consists of n complete turns 
in a positive direction. The solution of (1.14) in a doubly connected domain is multivalued 
and has the form 

M 

% = x , + n K ,  X , = Z o +  J '~ld~+~4;  (2 .1 )  
M o 

K = ~) nd: .-I- ~14. (2.21 

A multivalued expression for z determining the location of particles of the medium in 
the deformed state follows from (i.ii) and (2.1): 

M 

z = ~0 + e'n~ ~ e'~*(U~< + Vi4)  + (i  + e ' ~ +  . . .  +e'(~-'D~'**(U~e~+Ui4). (2 .3 )  

After transformation of the domain into a single-valued domain by drawing the slit o 
the ambiguity of the functions X and z is eliminated but the limit values of these functions 
on opposite sides of the slit do not agree,. There results from (2.2) and (2.3) that the 
limit values on different sides of the partition are connected by the relations 

-- %_ = K, ~ = e ~ -  + ~; (2.4) 

~= ~xp[~z0+ ~ ~ (ne~+ ~4)  (v l~ '  + v14')  + . ~  e'D. ' (2 .5)  
k M 0 

Traversa l  around the  c losed  contour  in  ( 2 . 2 ) ,  ( 2 . 3 ) ,  and (2 .5 )  i s  performed from the  s ide  of 
the slit o marked by a minus sign to the side marked by a plus. Moreover, the closed con- 
tour in (2.3) and (2.5) should start and terminate at the point M0. 

Formula (2.4) shows that the position of one edge of the slit in the deformed state is 
different from the position of the other by a finite plane displacement of an absolutely 
solid body, where the real constant K is the angle of finite rotation and the complex con- 
stant B determines the relative translational displacement of the slit edges. The actual 
realization of such a strain state generally requires removal or addition of material. The 
relationship (2.4) expresses the generalization of the Weingarten theorem [i, 9] of classi- 
cal elasticity theory to the nonlinear case. 

A formula for the jump of the displacement vector u results from (2.4) 

u + - - u - =  t + - ~ - q ,  q X  R - + - f - q X R -  §  ( 2 . 6 )  

u = R - - r ,  R = Xneu, r = xnen; 
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K 
q = 2 t g - T  e3, b = Re ~e 1 + Im ~e~. ( 2 :  7 )  

For a continuous strain tensor field satisfying the compatibility equation and in the 
presence of a doubly connected domain of the displacement jump corresponding to a rigid dis- 
placement on the slit, one speaks in linear elasticity theory about Volterra dislocations 
or distortion [I, 9-11]. Analogously, in a doubly connected nonlinearly elastic body a Vol- 
terra dislocation, or isolated defect, is contained if the constant vectors b and q are not 
simultaneously zero. As in linear elasticity theory [9], we call the isolated defect char- 
acteristics b and q the Burgers and Frank vectors, respectively. Formulas (2.2), (2~ and 
(2.7) yield an expression for the isolated defect characteristics in the plane case in terms 
of the finite strain tensor field. 

A case is possible when the domain occupied by the material body in the deformed State 
is not simply connected, and it is required to determine the reference configuration of the 

body according tO the Almansey strain tensor field as a function of Euler coordinates E' =-~-xl 

I--+(cT.c) -I. This case is considered by a method analogous to that elucidated above, with 

the sole difference that the reference and deformed configurations exchange roles. The dis- 
placement vector jump on the slit of a non-simply connected domain is determined in this case 

by t h e  r e l a t i o n s h i p  u + - - u _ = - -  t + T q . q '  q ' X  r _ + - g - - q  Mr_ + b .  

3. Le t  qn be c u r v i l i n e a r  c o o r d i n a t e s  in  t h e  r e f e r e n c e  c o n f i g u r a t i o n  (Lagrange c o o r d i -  

n a t e s ) .  The Lagrange v e c t o r  b a s i s  of  t he  deformed c o n f i g u r a t i o n  i s  found from I I~= OXm 
R k . l l , ~  = 6~. 0q" e,~, 

The e q u i l i b r i u m  e q u a t i o n s  in  t he  absence  of  mass f o r c e s  can be w r i t t e n  in  t he  form [11, 
p. 381 

_ _  F ~ l f ~ t ' m  o + = o,, (3.1) Oqn 

m t ~m, ( age= aGsk OGak 
where t nm = B ? - T . R m ;  L , h =  T c* -~ aqh + - -  }; G n k = R ~ - R ~ ;  D = det I[ G,~ II ; and T i s  t he  Oq n Oq s 

Cauchy s t r e s s  t e n s o r .  According t o  t he  govern ing  r e l a t i o n s h i p s  f o r  an e l a s t i c  m a t e r i a l  [11, 
p. 360] 

tnra = 2 ~ d - ~  oW 
o-~-~.~' d = detUg=kll,: ( 3 . 2 )  

axm 
gnl~ = rn ' rk ,  rn : -T~qn  era 

(W is the specific potential strain energy). 

Appending the compatibility equations (1.8) to (3.1) and (3.2), wherein x a must be re- 
placed by qa, we obtain a complete system of equations for Ga~ in the plane problem of non- 
linear elasticity theory. In the case of a doubly connected domain the relations (2.2) and 
(2.5) that give the Volterra dislocation parameters, must be added to the equations men- 
tioned. 

As regards the boundary conditions in the stresses, then as is known [2, pp. 131~ 132], 
in nonlinear elasticity theory we are limited to consideration of "dead" and "following" 
loadings. For the "dead" loading the boundary conditions have the form/D--~nst'raR m = f0 
Here n = nsr' is the normal to the body surface in the reference configuration, and f0 is the 
surface force given on this same surface. For the most typical case of a "following" load- 
ing, hydrostatic pressure, we write the boundary conditions in the form nstSmGmk = -pn k (p 
is the pressure intensity). Therefore, for the case of a "following" pressure the boundary 
conditions are written successfully directly in the components of the strain measure G, for 
the "dead" loading it is already necessary to know the rotation field determined in terms 
of G (in the plane strain case) by means of (2.1). 

Let us apply the relationships obtained to solve the problem of a defect in an elastic 
ring a ~ r ~ b .  

We will seek the solution of (3.1) in the form 

G = Gn(r)r'r t + G22(r)r~r 2 -f- r3r 3. ( 3 . 3 )  
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Here r ~ is the vector basis reciprocal to the Lagrange basis of the reference configuration 
rn, corresponding to the cylindrical coordinates qt __ r, q2__ % q3= z. 

The strain compatibility equation (1.8) takes the following form in this case 

GllG2~ dg"G22 t dG~ / riG11 G dG2~ ~ 
2 ~ + 11-7 j = 0. ( 3 . 4 )  

Using the posit ive-definiteness of the tensor G,: we introduce the posit ive functions h(r)  and 
B(r) such that 

Gn(r ) = A2(r), G,~(r) = B2(r). ( 3 . 5 )  

By u s i n g  t h e s e  f u n c t i o n s  we w r i t e  ( 3 . 4 )  a s  A d~B dB d A = o "  I n t e g r a t i n g  t h i s  r e l a t i o n s h i p  
dr 2 dr dr 

and denoting the constant of integration in terms of In ~(~> 0), we obtain IdB/drl = ~A. The 
absolute value sign can be omitted in this relationship but then ~ is considered arbitrary, 
either positive or negative. The case z < 0 (or dB/dr < O) corresponds to strain accom- 
panied by rotation of the ring inside out, and will not be considered here. Consequently, 
by omitting the absolute value sign henceforth, we consider ~ > 0: 

dB/dr = u A .  ( 3 . 6 )  

In our case the relationship (2.2) for the Frank angle takes the form 

u~l a--7- + --u11 - -  t d~. 
0 

Here  Ulz and U:2 a r e  c o m p o n e n t s  o f  t h e  d i s t o r t i o n  m e a s u r e  U in  t h e  o r t h o n o r m a l  b a s i s  o f  t h e  
cylindrical coordinates. Taking (3.5) into account U11(r) = A(r) and U~2(r) = r-iB(r). 
Taking (3.6) into account (3.7) is transformed into K----2~(~- I). 

Therefore, according to a given Frank angle K is determined by the constant ~: 

= (2~ + K)/2rc. ( 3 . 8 )  

In this case the field of rotations is X, = (• i)~. We consider here that the slit is drawn 
along the line ~ = 0 and we set x(M 0) = 0 for the point M 0 lying on this slit. 

Transforming (2.5) for 8, we have the relationship ~----({- eiK)(z0- (I/x)B(r0)), which shows 
that the problem of a wedge disclination (rotational dislocation) is solved successfully by 
the representation (3.3), while such a representation is still inadequate to the solution 
of the problem of a translational dislocation. Indeed, by setting K = 0 (no rotational dis- 
location), we obtain that 8 = 0 also, i.e., there is generally no defect in the body. 

When the defect characteristics K = 0, ~ ~ 0 are given no solution of a problem of 
the form (3.3) exists. 

We study the stress-strain state of a ring with disclinations for a semilinear material 
[2, ii]. The expression for W has the form W = (I/2)L tr ~ (U- I)+ ~ tr ((U- I) 2) (l and ~ are 
material constants ). 

The expressions for the stress tensor components (3.2) are the following in this case 
when the representations (3.3) and (3.5) are taken into account: 

t ~ = rA-~B-~[~(A -5 r - iB)  - -  2(L -5 ~)] -5 21xrA-1B-~, 

t ~2 = A-~B-2[~(A -5 r-XB) -- 2(~ + ~)] -5 2~tr-~A-~B -~, 

t ~ = XrA- ~B- I(A + r-*B - -  2). 

Substituting these expressions into the equilibrium equations (3.1) we find that the second 
and third are satisfied identically while the first takes the following form after manipula- 
tion 

(~ + 2~) ~ -~- + -- r-2B ~ + 2r -1 (L + ~) -~- -- A ---- 0. (3.9) 

Solving the system (3.6) and (3.9), we write 
1 

A (r) = C,r ~-~ + C~r -~-~ + "(I + x) (i -- ~)' 
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B(r)=C1r •-C2r -•+ ( l + •  r ,  v = ~ .  

Here C z and C 2 are arbitrary constants and v is the Poisson ratio. The constant ~ is ex- 
pressed in terms of the Frank angle by the relationship (3.8). 

We use the boundary conditions to determine the constants. We consider the ring sur- 
faces (r = a and r = b) load free. In this case we write the boundary conditions as (X + 
2u)A(r) + r-lXB(r) -- 2(X + ~) = 0, r = a, b. We find expressions for the constants 

CI___ t - - 2 v  ~ b z + l - a  ~+ l  
t - - ' ~  t - 5 ~  b 2 U - - a  2n '; (3.10) 

1 x b u-l- a u-I a ~ + l b X + l  
Cs  l - - v  l + x  b ~ •  

L e t  u s  c o n s i d e r  t h e  c a s e  o f  a c o n t i n u o u s  d i s c  ( a  = 0 ) .  F r o m  ( 3 . 1 0 )  C 1 =  t - - 2 v  
l--v l - s x  

The expressions for the strains take the form 

1 - -  2v u 1 
U n =  t - - v  1 + ~  9 ~ - 1 +  (l  + u) (t - -  v) ': 

I - -  2v u :~ r 
Uss= i - - v  l-5u p u - l - 5  (l -5 u) (t - -  v) " P = T  . 

It is seen from these formulas that for • > i the strain field has no singularities on the 
disclination axis (in the neighborhood of p = 0). For x < i a singularity of order p~-1 
exists for this field. 

Analysis of the relationship (3.8) shows that the case ~< i corresponds to the intro- 
duction of a wedge with apex angle K into a slit of the ring, and ~ > i corresponds to strain 
that occurs after removal of part of the material in the form of a sector from the ring with 
subsequent connection of the edges. 

We obtain expressions for the principal stresses o I, o2, and Oa in terms of the compo- 
nents t mn in the case of a continuous disc by means of the formulas oi = t1~Gl~, o2 = t22G22, 
o a = t ~a in the form 

2p~ (9 " - I  - -  1) 2~ (zp " - I  - -  1) 
(t  - -  2v) p . - I  + t (1 - -  2v) • 2 1 5  + 1'; 

2~v (t - -  v) (t  -5 u) (2• ~-1  - -  u - -  t )  

~a ---- "z [(I - -  2v) •  -5 t1 [(I - -  2v) 9 u-1-5 i ]  " 

It is seen that the principal stresses have no singularities on the disclination axis, 

The results obtained about the behavior of the stress and strain near a defect axis 
with a rigorous accounting of the geometric nonlinearity differ qualitatively from the re- 
suits of linear elasticity theory [9, ii], according to which the strain and stress fields 
have a logarithmic singularity on the disclination axis. 

- - X b  1 - " , C ~ = 0 .  
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